

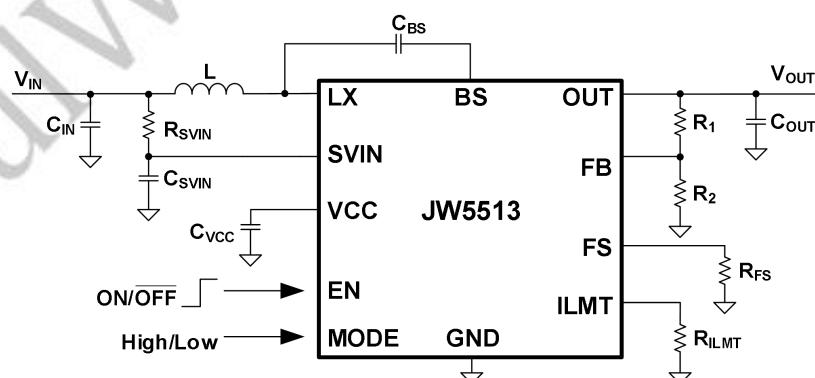
Parameters Subject to Change Without Notice

DESCRIPTION

The JW®5513 is a synchronous high-efficiency, step-up boost converter. The device adopts constant-off-time (COT) control topology. The integrated low $R_{DS(ON)}$ switches minimize the conduction loss.

The JW5513 provides selectable PFM/PWM light load operation mode. The device features cycle by cycle peak current limit up to 15A. The low output voltage ripple, the small external inductor and the capacitor size are achieved at programmable pseudo-constant frequency.

JW5513 guarantees robustness with over voltage protection and over temperature protection.

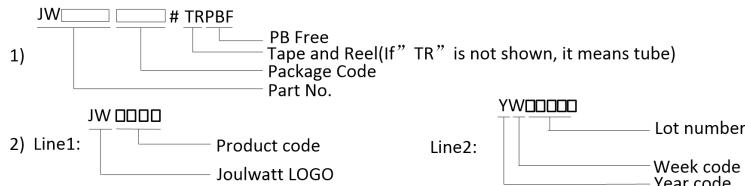

FEATURES

- Input Voltage Range: 2.6V to 20V
- Output Voltage Range: up to 20V
- Programmable Switch Peak Current: up to 15A
- Low $R_{DS(ON)}$ for FETs Integrated: Low-Side FET: 10mΩ, High-Side FET: 20mΩ
- Adjustable Switching Frequency: up to 2MHz
- PFM/PWM Selectable Light Load Operation Mode
- Internal Loop Compensation
- Internal Soft-start Limit the Inrush Current
- Over Temperature Protection
- Over Voltage Protection
- RoHS Compliant and Halogen Free
- Compact Package: QFN3x3-20

APPLICATIONS

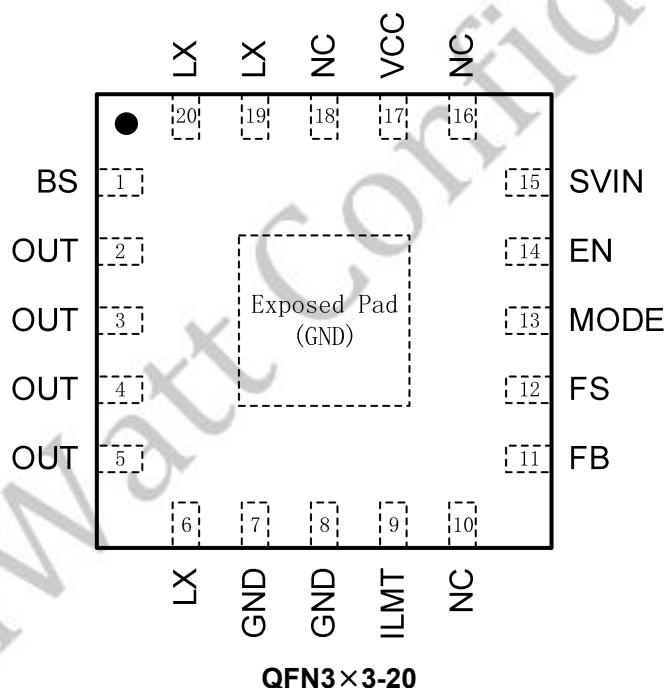
- High Power AP
- Bluetooth Speaker
- Power Banks
- E-cigarette

TYPICAL APPLICATION



User Guide: For the application of $V_o > 16V$ and $I_{PEAK} > 10A$, please connect a snubber circuit($4.7\Omega + 2.2nF$) from LX pin to GND

ORDER INFORMATION


DEVICE ¹⁾	PACKAGE	TOP MARKING ²⁾
JW5513QFNAV#TRPBF	QFN3x3-20	JW5513 YW□□□□□

Notes:

PIN CONFIGURATION

TOP VIEW

ABSOLUTE MAXIMUM RATING¹⁾

SVIN, LX, OUT, ILMT, FS, MODE, EN	-0.3V to 20V
FB, VCC	-0.3V to 4V
BS-LX	-0.3V to 4V
Dynamic LX Voltage in 10ns Duration	-3.5V to 24V
Junction Temperature Range ²⁾	-40°C to +150°C
Power Dissipation, P _D @ (T _A = 25°C) ³⁾ QFN3x3-20	3.1W
Lead Temperature (Soldering, 10 sec.)	260°C

Storage Temperature Range -65°C to +150°C

RECOMMENDED OPERATING CONDITIONS⁴⁾

SVIN 2.6V to 20V

Junction Temperature Range -40°C to +125°C

Ambient Temperature Range -40°C to +85°C

THERMAL PERFORMANCE⁵⁾

θ_{JA} θ_{JC}

QFN3×3-20 32 4°C/W

Note:

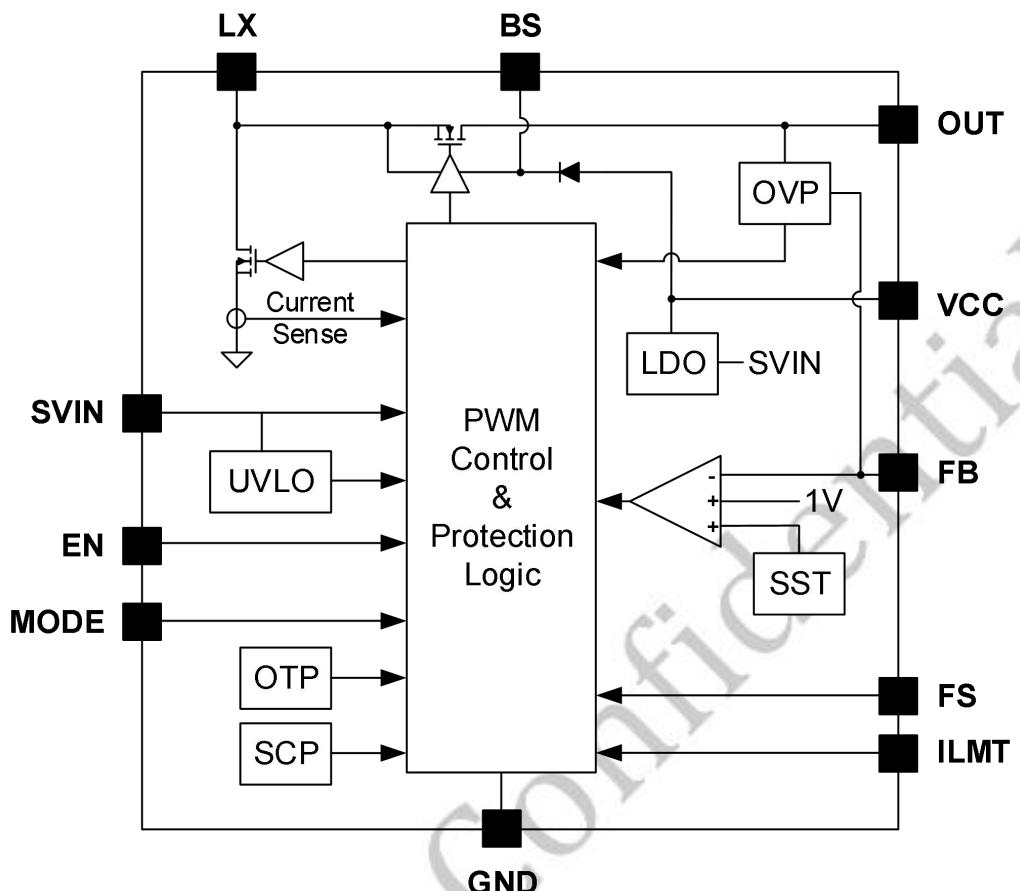
- 1) Exceeding these ratings may damage the device. These stress ratings do not imply function operation of the device at any other conditions beyond those indicated under RECOMMENDED OPERATING CONDITIONS
- 2) The JW5513 includes thermal protection that is intended to protect the device in overload conditions. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.
- 3) The maximum allowable continuous power dissipation at any ambient temperature is calculated by $PD\text{ (MAX)} = (T_J\text{(MAX)} - T_A)/\theta_{JA}$.
- 4) The device is not guaranteed to function outside of its operating conditions.
- 5) Measured in the natural convection at $T_A = 25^\circ\text{C}$ on a four-layer JouWatt Evaluation Board.

ELECTRICAL CHARACTERISTICS

<i>V_{IN}=5V, V_{OUT}=12V, I_{OUT}=100mA, T_A=25°C, unless otherwise specified</i>						
Item	Symbol	Condition	Min.	Typ.	Max.	Units
POWER SUPPLY						
Input voltage range	V _{SVIN}		2.6		20	V
Input voltage under voltage lockout (UVLO) threshold	V _{SVIN_UVLO}	V _{SVIN} rising		2.4	2.6	V
		V _{SVIN} falling		2.0		V
VIN UVLO hysteresis	V _{SVIN_HYS}			200		mV
Quiescent current	I _Q			260	300	uA
Quiescent current in sleep mode	I _{Q_SLP}	V _{FB} =1.1V		100	130	uA
Shutdown current	I _{SHDN}	EN=0		1.5	3.5	uA
POWER SWITCHES						
Low side N-FET(LS-FET) R _{ON}	R _{DS(ON)_L}			10		mΩ
High side N-FET(HS-FET) R _{ON}	R _{DS(ON)_H}			20		mΩ
VOLTAGE REFERENCE						
Feedback reference voltage	V _{REF}		0.99	1	1.01	V
FB leakage current	I _{FB}	V _{FB} =3.3V	-50		50	nA
CURRENT LIMIT						
LS-FET current limit	I _{ILMT}	R _{ILMT} =100kΩ	13	15	17	A
LS-FET current limit program range	I _{ILMT_RNG}		3		15	A
ILMT reference voltage	V _{ILMT}			0.6		V
ENABLE AND MODE						
EN/MODE input voltage high	V _{EN/MODE_H}		1.6			V
EN/MODE input voltage low	V _{EN/MODE_L}				0.4	V
SWITCHING CHARACTERISTICS						
Switching frequency program range	f _{SW_RNG}		300		2000	kHz
Switching frequency accuracy	f _{SW}	R _{FS} =360kΩ	400	500	600	kHz
Minimum ON time	T _{ON_MIN}			120		ns
Minimum OFF time	T _{OFF_MIN}			110		ns
SOFT START						
Soft start time	T _{SS}			3		ms
PROTECTION						
Output OVP threshold	V _{OUT_OVP}			23.5		V
Feedback overvoltage with respect to reference voltage	V _{FB_OVP}	V _{FB} rising		120		%
		V _{FB} falling		110		%

Thermal shutdown temperature ⁽⁶⁾	T _{SD}			150		°C
Thermal shutdown hysteresis ⁽⁶⁾	T _{HYS}			15		°C

Notes:


6) Guaranteed by design.

JouWatt Confidential

PIN DESCRIPTION

Pin No.	Name	Description
1	BS	Boot-strap pin. Supply rectifier FET's gate driver. Connect a 0.1 μ F ceramic capacitor between BS and LX.
2,3,4,5	OUT	The Boost converter output pin.
6,19,20	LX	Inductor node. Connect an inductor from power input to the LX pin.
7,8,EP	GND	Ground pin of IC.
9	ILMT	Switch peak current limit setting. Connect a resistor from this pin to GND.
10,16,18	NC	Not connected.
11	FB	Feedback pin. Connected to the center of the resistor voltage divider to program the output voltage: $V_{OUT}=1V \times (R_1/R_2+1)$
12	FS	Switching frequency setting pin. Connect a resistor from this pin to ground to program the switching frequency.
13	MODE	Operating mode selection under light load. Pull this pin low for PFM operation, and pull this pin high or leave it floating for PWM operation.
14	EN	Enable control. Pull high to turn on the IC. Do not leave it floating.
15	SVIN	IC power supply input pin. Decouple this pin to the GND pin with a 1 μ F ceramic capacitor at least.
17	VCC	Output of the internal LDO regulator. Decouple this pin to the GND pin with a 1 μ F ceramic capacitor at least.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The JW5513 is a synchronous, high-efficiency, step-up boost converter. It is designed to operate from an input voltage range between 2.6V and 20V with up to peak switch current limit.

The device adopts adaptive constant off time and current mode control. The pseudo-constant switching frequency in CCM can be programmed. PFM or PWM light load operation is selected by the MODE pin.

The JW5513 guarantees robustness with over voltage protection and over temperature protection.

Start-Up

When EN is high logic, the JW5513 can start up from a voltage as low as 2.4V typical. If the input voltage rises above $V_{SVIN,UVLO}$, the chip begins to operate and starts in PFM mode. The internal soft-start time can limit the inrush current during start-up. When the input voltage drops below 2.0V typical, the chip stops working.

Device Enable

The JW5513 starts operation when EN pin is pulled high and starts up with a soft-start process. Pulling EN pin low can force the device into shutdown mode. In shutdown mode, the chip stops switching and all the internal control circuit is off.

Output Voltage

The output voltage is set by an external feedback resistive divider. The feedback signal is compared with internal precision 1V voltage reference by an error amplifier. The output voltage can be given by the equation:

$$V_o(V) = \frac{1V \times (R_1 + R_2)}{R_2}$$

Where R_1 and R_2 are defined in the typical application figure.

Adjustable Switch Peak Current Limit

To prevent the device from being damaged by a large input peak current, a cycle-by-cycle current limit is adopted in JW5513. The low side switch is turned off immediately, as soon as the switch current touches the setting limit, which is programmed by a resistor from the ILIM pin to ground. The peak current limit can be given by the formula below:

$$I_{LMT}(A) = \frac{1700}{R_{ILMT}(k\Omega)} - 2$$

where I_{LMT} is the switch peak current limit, R_{ILMT} is the resistor between ILMT pin and ground.

Adjustable Switching Frequency

The switching frequency of the JW5513 in CCM can be programmed by adjusting the external resistor R_{FS} connected between FS pin and ground.

$$F_{SW}(kHz) = \frac{73565}{R_{FS}(k\Omega)} + 300$$

Light Load Operation Mode Selection

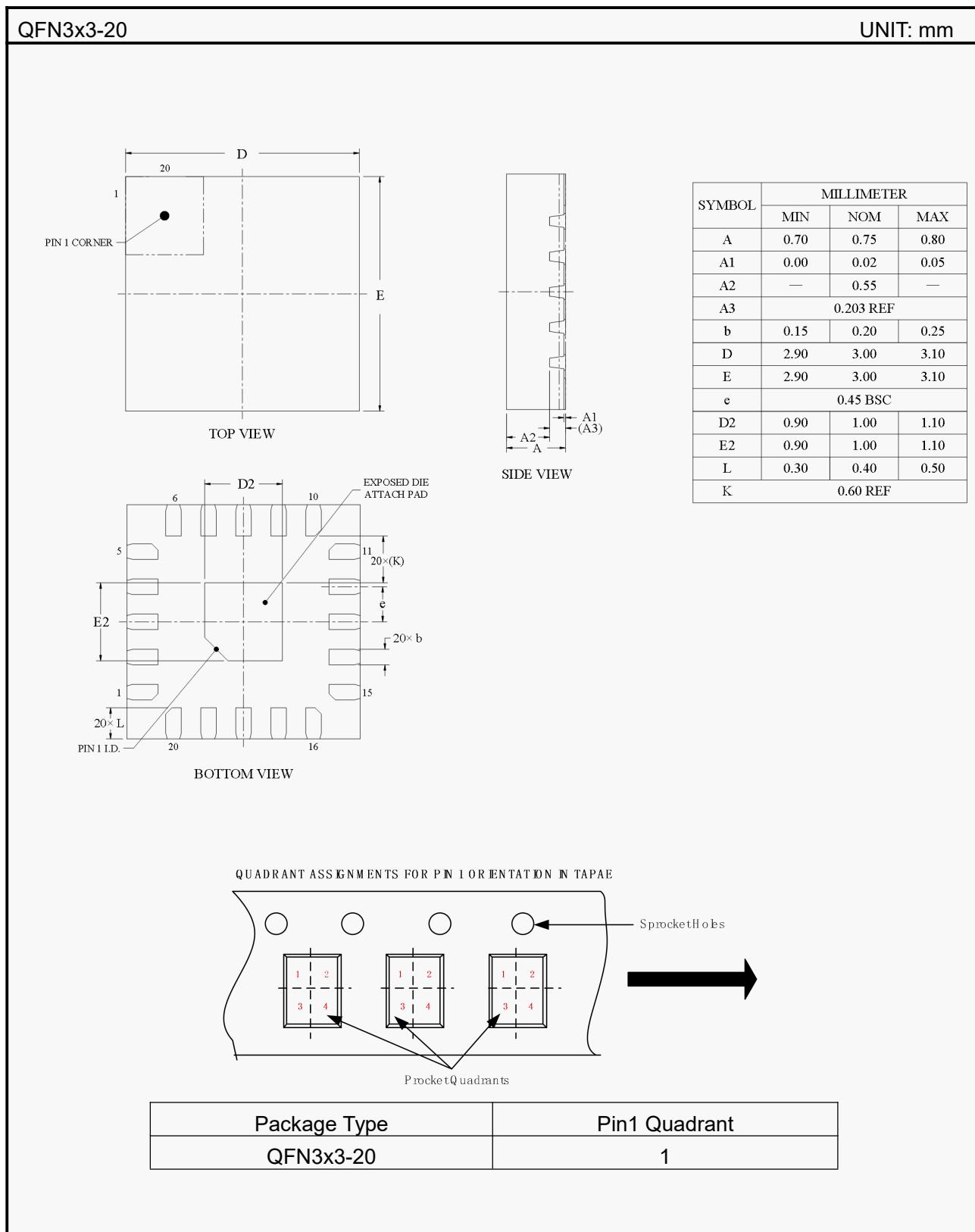
During light load operation, PFM or PWM can be selected by the MODE pin. When the MODE pin is pulled logic high ($>1.6V$), the JW5513 operates in PWM. When the MODE pin is pulled logic low ($<0.4V$), the device operates in PFM.

PFM is engaged to maintain high efficiency at light load when Mode pin is pulled low. In PFM mode, switching frequency is continuously controlled in proportion to the load current, i.e.

switch frequency decreases when load current drops to increase power efficiency at light load by reducing switching loss and minimizing the circuit power dissipation.

Protection

Over Voltage Protection


If output voltage is higher than V_{OUT_OVP} (Typ. 23.5V) or V_{FB} exceed 1.2V typical, the device

stops switching immediately. Until the output voltage drops below 23.5V typical and V_{FB} drops below 1.1V typical, the device resumes switching automatically.

Over Temperature Protection

When the junction temperature of the device rises above T_{SD} , the device is forced into shut down mode. When the temperature drops by T_{HYS} , the device can be resumed with soft start.

PACKAGE OUTLINE

IMPORTANT NOTICE

- JouWatt Technology Inc. reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein.
- Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden.
- JouWatt Technology Inc. does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Copyright © 2020 JW5513 Incorporated.

All rights are reserved by JouWatt Technology Inc.

JouWatt Confidential